- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Collins, Scott L (1)
-
Griffin‐Nolan, Robert J (1)
-
Ishii, Naohiro I (1)
-
Knapp, Alan K (1)
-
Luo, Wentao (1)
-
Muraina, Taofeek O (1)
-
Ross, Samuel_R_P J (1)
-
Rudgers, Jennifer A (1)
-
Sasaki, Takehiro (1)
-
Slette, Ingrid J (1)
-
Smith, Melinda D (1)
-
Song, Lin (1)
-
Te, Niwu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Extreme droughts are intensifying, yet their impact on temporal variability of grassland functioning and its drivers remains poorly understood. We imposed a 6‐year extreme drought in two semiarid grasslands to explore how drought influences the temporal variability of ANPP and identify potential stabilising mechanisms. Drought decreased ANPP while increasing its temporal variability across grasslands. In the absence of drought, ANPP variability was strongly driven by the dominant plant species (i.e., mass‐ratio effects), as captured by community‐weighted traits and species stability. However, drought decreased the dominance of perennial grasses, providing opportunities for subordinate species to alter the stability of productivity through compensatory dynamics. Specifically, under drought, species asynchrony emerged as a more important correlate of ANPP variability than community‐weighted traits or species stability. Our findings suggest that in grasslands, prolonged, extreme droughts may decrease the relative contribution of mass‐ratio effects versus compensatory dynamics to productivity stability by reducing the influence of dominant species.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
